离心风机叶片吸力侧形成的低能流积聚的“尾迹区”,形成“射流-尾流”结构。加进气箱后,风机叶轮尾缘处的“尾迹-射流”的-,风机模型尾迹区占了比较大的空间,减少了风机流道有效面积。在小流量区,风机内部的流场分布发生偏心现象(c 处),叶轮流道e 侧,气体比较充实,叶轮流道f 侧气体分布较差,与原始风机内部流场分布相比,供应离心风机,其离心风机叶轮流道的充盈性差。离心风机的效率曲线如图6,无进气箱情况下在流量为2.82kg/s,压力为3 106.23pa 时,达到较率68.64%;加进气箱后在流量为1.68kg/s,压力为2 775.54pa,达到较率59.45%,通过与原始风机对比可知,加进气箱后其较率降低8.19%。同样由图6 效率曲线对比图可知,加进气箱后风机整体效率降低,与原始离心风机相比其区域比较窄,缩短了工作区域,且加进气箱后较优工况点向小流量区偏移。加进气箱后,离心风机的全开流量降低,与无进气箱相比,流量降低了16.9%。由图7 可知,加进气箱不仅降低了风机的全开流量,其全压也有所减少。风机性能测试采用c 型试验装置对带进气箱的离心风机进行了性能测试,测试标准按gb/t 1236-2017<工业通风机用标准化风道进行性能实验>执行。
消声蜗壳对离心风机气动性能的影响原风机与不同消声组合试验所得的气动性能对比如图3 所示。试验结果表明: 由于穿孔板相对于光滑的铝板有着较高的壁面摩擦阻力,导致加装穿孔板后的风机压力和效率在整个测试工况范围内都有不同程度的降低。4种消声组合方式的压力损失并不相同,当额定转速为3 800 r /min,在设计工况下,a 组合改进风机全压降低了约16.0 pa,效率下降了约1.28%; b 组合改进风机全压降低了约5.0 pa,离心风机效率下降了约0.9%; c 组合改进风机全压降低了约36.8 pa,效率下降了约3.18%; d 组合改进风机全压降低了约45.8 pa,效率下降了约3.28%。
主要由于安装穿孔板的面积不同,导致不同消声组合方式的摩擦损失不同。b 组合即只在风机后盖板上安装穿孔板,风机压力损失小。不同工况下,风机压力和效率损失也不相同,低压离心风机,在设计工况及偏大流量工况下,离心风机压力和效率损失较大,效率也同步降低。主要原因是大流量工况下,蜗壳内部气流速度较高,气流与穿孔板之间的摩擦损失增加。消声蜗壳为a 组合形式时与原风机的出口a声级随流量变化的对比图。可以看出,8-09离心风机,不同工况下,a 型消声蜗壳的降噪效果不同,离心风机在额定工况点附近,降噪效果好; 在大流量工况下,降噪效果变差,这主要因为大流量情况下,蜗壳内气体流速较大,而气体流速对吸声材料的吸声效果影响很大; 在小流量工况下,风机流动恶化,风机振动较大,导致振动噪声很大以致降噪效果反而变差。与原风机相比,在额定工况点a 声级降低约4.5 db( a) ,在大流量工况下,a 声级降低约3.6 db( a) ,在小流量工况下,滨州离心风机,a 声级降低约1.9 db( a) 。
将离心风机模型导入icem 进行网格划分,网格划分过程中对离心风-键部位要进行加密处理,如叶轮、集流器、蜗舌、进气箱的转角处等。对风机的进口与出口适当延长,以-计算的稳定性。考虑到离心风机结构的复杂且不规则性,本文采用非结构四面体网格进行划分,其中无进气箱的离心风机网格数量约370万,网格为0.3以上;带进气箱的离心风机网格数量为380万,网格为0.3以上。
离心风机采用标准k-?模型,壁面函数为scalable,数值计算方法为-求解格式,求解格式为一阶格式。由于通风机转速低,马赫数小,可认为气流为不可压缩定常流动。进口给定流量,出口给定静压,壁面条件为无滑移边界,转速为1 480r/min,并将流动区域分为静止域与旋转域,两者通过interface连接,连接模型为普通连接,坐标变换为转子算法,网格连接方式为ggi。本文所研究的某离心风机叶轮有均布的16 个前向的大小叶片,其内部流场较为复杂,为了揭示离心风机内的流场特性,对风机进行全三维数值模拟。先单独分析了进气箱内部流场特性,然后对进气箱与风机进行一体化分析,研究进气箱对离心风机性能的影响。
滨州离心风机-冠熙 精研风机20年-8-09离心风机由山东冠熙设备有限公司提供。山东冠熙设备有限公司是从事“轴流风机,耐高温高湿风机,烘干设备用风机,离心风机,除尘风机”的企业,公司秉承“诚信经营,用心服务”的理念,为您提供高的产品和服务。欢迎来电咨询!联系人:李海伟。同时本公司还是从事锅炉引风机,锅炉离心风机,锅炉离心引风机的厂家,欢迎来电咨询。
联系我们时请一定说明是在100招商网上看到的此信息,谢谢!
本文链接:https://www.zhaoshang100.com/zhaoshang/227873948.html
关键词: